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This contribution considers several advanced characterization techniques on the basis of static 
light scattering and presumes basis knowledge on size excluded chromatography (SEC) and 
field flow fractionation (FFF).  
A short retrospect to the history of light scattering is given as a helpful introduction to  the 
higher complexity of these additional procedures. In the past the literature dealt mostly with 
the scattering behavior of unperturbed linear chains. However, the determined radius of 
gyration in a good solvent in dependence of the molar mass clearly indicated a perturbation of 
the dimensions by excluded volume interactions. This contradiction requires additional 
measurements a careful analysis for instance of the angular dependence of the scattered light 
and the concentration dependence. Furthermore the preparation of manifold so-called hyper-
branched samples induced a new challenge to deriving adjusted theories and the 
corresponding interpretation by experimentalists. 
 

1. Introduction 

The two field indicated by the title of this short review have not been a topic of intense 

research in the past. Emphasis was mainly laid on the investigation of linear chains or weakly 

branched chains because of the high flexibility of polymer chains which made these product 

attractive as new materials. Branching was known to lead to networks at higher monomer 

conversion, but the networks should consist of fairly long chains between the crosslinks to 

keep the high flexibility of the material which now displayed a high elasticity resembling 

those of natural rubber.  

The change of interest to highly branched chains was probably evoked by the demand for 

drug carriers which requires particle with a large number of external functional groups for 

reversible binding of the medical samples. Both, the linear chains and especially the branched 

samples, prepared by common synthesis, possess a broad molar mass distribution which are 

suspected to reduce the material quality and not being suitable for medical application in a 

human body. Now the tendency turned towards the effort to develop suitable chemical 

preparation techniques to reduce the width of the distribution or even to prepare perfectly 

uniform samples. The latter was finally achieved by completely controlled reactions to obtain 

dendrimers, i.e. sphere-like samples with perfectly branched shells, up to 6 or even more 

generations. The control of such perfect synthesis affords much labor and therefore Kim and 

Webster1. looked for preparations of highly branched samples which would have not the 
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perfect shape but still a huge number of functional groups, accessible to further reactions. 

These samples they denoted as hyper-branched leaving open what is meant by hyper. This 

blurred but very attractive denomination stimulated countless types of synthesis to branched 

samples, but conformational properties remained unpredictable from the synthesis alone.  

Already in the beginning of polymer science the investigation of the molar mass distribution 

by special fractionation techniques became an urgent request. We now dispose over the two 

almost perfect separation techniques of size exclusion chromatography (SEC) and field flow 

fractionation (FFF). Both complementary methods allow separation of molar masses from a 

broad size distribution of polymers, by the on-line application of light scattering record of the 

refractive index which permits the evaluation of the molar mass within small slices and the 

mean square radius, if the fractions were sufficiently large in size.  

The high quality data obtained by the highly developed instruments are immediately 

evaluated and are printed by an attached computer. The instruments are easy to handle but it 

remained a somewhat mystery how these results were obtained, because all the intellectual 

steps were made by the computer. The experience collected with linear chains still allowed for 

a reasonable interpretation of the results, but this does not hold for the confusing manifold of 

different branching structures. In addition the linear chains are known to swell to larger sizes 

by excluded volume interactions, if dispersed in a good solvent, but little is known on the 

swelling of branched polymers in good solvents. The new aspects require a profound 

understanding of the fundamental basis of static and dynamic light scattering. This demand is 

not an easy topic and becomes apparent if one has a look at the history on the question what is 

light and what happens if light hits a material.  

2. Historical Overview 

The following (incomplete) list of outstanding scientists gives an impression of the endeavor 

to clarify the nature of light and its effects. Since 300 years the intriguing question on the 

nature of light kept scientists busy. The progress was slow, but it may help us to understand 

what light scattering means and which conclusions can be drawn. 

 

 

 

 

 

 

Christian Huygens          1624-1695 

Isaac Newton                  1643-1727 

John Tyndall                   1820-1893 

James Clerk Maxwell     1831-1879 

Heinrich Hertz                1857-1894 

Lord Rayleigh                1842-1919 

Albert Einstein               1879-1955 
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The considerations on light scattering apparently started in the 17th century with Christiaan 

Huygens.2 He formulated the principle: 

 

Huygens principle: 

 “Every point of material that is hit by light is initiated to emit light of the same 

wavelength” 

Huygens principle is a most valuable starting point for a theory of light scattering, this will be 

demonstrated somewhat later. Clearly his statement includes the opinion that light consists of 

waves; but Isaac Newton, like Huygens a scientist in astronomy and founder of basic 

mechanics, adopted the view that light consists of particles and heavily opposed against 

Huygens principle. For almost two centuries all further development in the research on the 

nature of light was considerably impeded by Isaac Newton’s3 reputation and paramount 

scientific work mainly in mechanics.  

Experimentalists often do not care much about theories and just try to find what can be 

observed and measured. Such experimental observations were made by John Tyndall about 

one hundred years after Newton. He noticed that the trail of light in a slightly turbid colloidal 

solution is visible and can be detected. He also found that the scattered light is partially 

polarized and that the magnitude of polarization depends on the angle at which the trail of 

light is envisaged. 

An incisive progress in theory was achieved by the ingenious work of James Clerk Maxwell4 

on the correlation between electricity and magnetism which was compatible to 

electromagnetic waves, thus giving support to light as electromagnetic waves. Lord Rayleigh5 

took up this conjecture and derived with Maxwell’s theory a first analytic equation for the 

scattered light from gas molecules. Scattering is assumed to be caused by a primary beam to 

initiate dipole vibrations of the electrons in the outmost shell in the Nils Bor-model. In 

theories the expression of polarizability is the amount of vibrating dipoles per unit volume.. In 

his first draft of the theory Lord Rayleigh he took account only of these dipole vibrations, 

which already allowed him to explain the blue color of the sky. Einstein6 noticed that with this 

originally drafted equation applied to solutions the square of the molar mass, M2, of the 

dissolved particles would result in contrast to expectations. He brought to attention that 

besides the dipole fluctuations the local fluctuations in concentration have to be taken into 

account. With this correction the molar mass of the particle was correctly obtained.  
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3. Osmotic compressibility or osmotic modulus.(Debye’s contribution)7. 

Einstein’s comment was still incomplete because he considered only the entropic part of the 

fluctuations which neglects the energetic of interactions between particles at finite 

concentration. Einstein’s comment. was a result of his work on Brownian motions6. and it 

remains valid only at infinite dilution. Application of Einstein’s version to real experiments 

apparently leads to molar masses which decrease at higher concentration. Debye and one year 

later Zimm, Stein and Doty8 took up this topic and repeated Einstein’s calculation but now 

using the chemical potential rather than only the entropy of the concentration fluctuations. 

The chemical potential particleG / n∂ ∂  in turn is related to the osmotic pressure caused by the 

dissolved molecules, and with this expansion of Einstein’s derivation the following equation 

for scattered light was obtained. 
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The Rayleigh ratio 2

0

i( )
R r

Iθ
θ=  takes into account that the scattered intensity i( )θ  decreases 

with the square of the distance to the detector from the scattering volume. I0 denotes the 

primary beam (which is about 106 times stronger than the scattering intensity i(θ). 

The first part in eq.1 is related to the isothermal compressibility β  of the solvent (which is 

very low for pure liquids) and the second part is related to what may be denoted as osmotic 

compressibility which is a much more pronounced effect than the isothermal compressibility 

and is strongly related to the value of the molar mass.  

The effect of osmotic compressibility requires some additional comments. Due to thermal 

fluctuations (i.e. Brownian motions) a local increase or (decrease) of the concentration, 

around average concentration occurs. These deviations from equilibrium cause an increase (or 

decrease) of the osmotic pressure which tends to push this micro heterogeneity back to 

equilibrium; The back-driving force is much weaker and allows for considerably larger 

deviations from equilibrium compared to the force in the density fluctuations.  

It is sensible to subtraction the scattering intensity of the solvent because we are especially 

interested in the behavior of the dissolved polymers. After subtraction of the separately 

measured scattering intensity of the solvent the now well known Debye9 equation is obtained. 
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Even with this simplified writing eq.(2) is inconvenient if used for the analysis of 

measurements because the important quantity which contains the molar mass is enclosed in 

the osmotic pressure. Therefore Debye9 suggested to use the reciprocal of eq.(2) 
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In this equation 2 3 nA ; A A⋯  are the second, third and nth virial coefficient in the power 

expansion of the osmotic pressure in terms of concentration. Eq.(4) remains valid if the 

dimension of the dissolved samples are small compared to the wavelength of the light, more 

precisely if the radius of gyration / 20gR λ< (e.g. if the red light of an HeNe laser is used Rg 

should be smaller than 10 nm.). For larger macromolecules or colloid particles an angular 

dependence of the scattered light occurs. These angular dependencies allow for the 

determination of Rg and for large structure in the range of the wavelength this angular 

dependence is characteristic for special structure (rods, sphere or coiled macromolecules) and 

will be discussed in the next section. 

 

4. Additional remarks on the Osmotic Compressibility or the Osmotic Modulus 

4.1 Coil-Coil Interpenetration Function 

The second virial coefficient is known to indicate the solubility of the dissolved polymer in a 

solvent. i.e. a large value indicates good solvent behavior and a value of 2 0A = a quasi ideal 

solution, denoted by Flory as theta θ-solvent. At the temperature T=θ of the used solvent the 

repulsive and attractive forces are balanced to zero. Also negative values are possible but 

eventually lead to phase separation into a polymer-rich and polymer-low concentration. For 

flexible polymers A2 is given by the equation10 
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AN  is Avogadro’s number, Rg the radius of gyration and *Ψ  the asymptotic penetration 

function at large molar mass of the sample. Eq.5 resembles the van der Waals equation for 

real gases with the exception of the numerical factors and the use of the cube of the radius of 

gyration instead of the radius of an equivalent hard sphere, but it differs significantly by the 

additional penetration factor *Ψ . This mathematically rather complex function has a simple 

meaning: Polymers have no defined surface but consist of flexible chain ends which partially 

are stretched out. If two such polymers are coming into contact the dangling chain segments 

from both particles will penetrate and form a common domain. The depth of penetration 

depends on the strength of the repulsive interactions between the various repeat units of the 

two interacting particles which this is given by the excluded volume β of the individual 

monomer repeat units. Figure 1 may illustrate what is meant.  

 

 

Figure 1: Sketch of two interpenetrating 

       macromolecules. 

A small Ψ  function correspond to deep penetration and depends to some extent on the molar 

mass of the sample and soon with increasing M reaches a limited value of * 0.29Ψ = 11,12 for 

flexible linear chains. As may be expected this penetration function depends on the molecular 

structure. Figure 2 shows this behavior for a number of examples.13 

 

 

 

 

 

 

Figure 2: Penetration functions of linear and star-branched polymers, mainly from star- 

molecules. The two points with more than 100 chains refer to star-microgels. i.e. with a small 

microgel as core. For further references see 134.2 Overlap Concentration and Entanglement 
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Further insight in the inter-particle interactions is obtained if eq.5 is slightly rearranged by 

multiplying it by M 

3
3/ 2 *

2

1
(4 )

*
g
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R
A M N

M c
π= Ψ ≡         (6) 

where c* may be taken as the weight concentration of the monomer repeat units in the particle. 

Let us shortly consider the ratio c/c*: We can make measurements at X = c/c* < 1 or at X = 

c/c*>1. We then notice that at X=1 the concentration of monomer units in the dissolved 

particles equals the in-weight concentration. In other words the macromolecules must just 

attach each other, and at higher concentration X > 1 the segment clouds of the chain must start 

to overlap and form an dynamic network of entangled chains. Thus c* may be called the 

overlap concentration. 

With this notation eq.(4)can be written13  
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This notation goes back to Pierre-Gilles de Gennes.14 It was known to him that for hard 

spheres the higher virial  coefficients can be expressed in terms of A2, and this was possible 

for other uniform structures.  

       

Figure 3: Variation of the osmotic modulus w w app( M / RT )( / c ) M / M ( c )Π∂ ∂ =  as a 

function of c/c* for three models and experimental data from a linear polyester and three 

crosslinked polyesters of the same chain-length. 

 

A well defined interaction curve is obtained, but with different coefficients gn for linear or 

branched structures. Against de Gennes expectation differences between different structures 
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of the dissolved particles are noticeable, without knowing the mean square radius of gyration. 

Eq.7 is of great value for instance, if soft materials are characterized by rheology, since at X > 

1 an entangled network can be formed which exhibits special behavior in the rheological 

experiment. Figure 3 shows some examples of the osmotic modulus and the theoretical 

curves, i.e. for hard spheres15, cylindrical structures16 and flexible coils.17 The graphs 

elucidates whether a flexible or a stiff chain is in the solution or whether the particle had a 

more globular shape.  

 

5. Angular dependence of scattered light 

It was already mentioned that the scattering function of eq.4 or 7 holds only for small particles 

compared to the used wavelength. Macromolecules with radii of gyration larger than 10 nm 

cause an angular dependence which is described by a normalized function P(q) 
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=

         (8) 

The required extension of eq.4 is given by  
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This angular dependence of the scattering intensity at large q-values displays a characteristic 

behavior and is for this reason called particle scattering factor or molecular structure factor. 

To understand this one has to go to some details on the interference of the scattering waves if 

two scattering points are separated by a certain length, for instance, these may be the two end-

points of a segment in a chain-molecule. Figure 4 may demonstrate on a simple example 

when only two such scattering points are activated as scattering emitters. Because of the finite 

distance length between these points a phase difference between the two light waves arises 

and causes interference. The phase difference increases with the scattering angle. The effect 

can be described by unit vectors of the primary beam and from the scattered light. The 

magnitude of the difference of the two unit-vectors is given by [ ]0 2sin( / 2)θ− =s s , and 

when the wave length of the used light is taken into account one obtains for the magnitude of 

the scattering vector q 

[ ] 0

0

4
sin( / 2)

n
q q

π θ
λ

= =         (10) 

Note, the scattering vector has the dimension of 1/length. 
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In a real experiment the macromolecules are composed of many chain segments of different 

length, and therefore the sum over all pairs of units which form covalently bond segments has 

to be taken. An example of such segment is shown in Figure 4b. The summation finally leads, 

after normalization by the total number of units, to eq.11 for the particle scattering factor 

2
1

sin( )1
( )

N N
jk

j k jk

qr
P q

N qr=

= ∑∑         (11 

θ
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j

k
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s
Laser Light
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|q| = (4πn0/λ0)sin(θ ⁄2

 

Figure 4a: The set-up of the primary light beam and the position of the detector for detection 

of the scattered light at angle θ. The insert to the right indicates the definition of the scattering 

vector q. 

 

 Figure 4b: Demonstration of the distance vector between two 

 units j and k in a branched chain. The segment contour length 

 consists in this case of 9 repeat units and a contour length of 

 ljk=8b 

 

Eq. 11 contains the average <sin(qrjk)/qrjk> which requires some additional comments.  

(i) Orientational fluctuation: The derivation of sin(q·r)/(q·r) was not a trivial task. It takes 

account of the fact that due to Brownian motions the subject can take all orientations. In 

experiments we measure the average over all orientations. The sin(qrjk)/qrjk function arises  

from the average of a cosine function with an argument that contains the cosine of the angle 

between the orientation of the distance vector r and the scattering vector q (see Figure 4a).  

 
           (12) 
 

(For details of the not trivial derivation see the original paper by Debye18 and the repeat by 

Guinier19 . 

qr

0

1 sin( qr )
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qr qr
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(ii) End-to-end fluctuations: For rigid particles like hard spheres or rigid rod no further 

derivations are required, but for flexible linear or branched chains the end-to-end distance of 

the two segment ends fluctuate around an average length. This average is indicated by the 

⋯  brackets and requires the knowledge of the end-to-end distance distribution. The 

adequate distributions are often not known, and approximations have to used.  

Once the averagesin( ) /jk jkqr qr has been derived the sum in eq.11 over al pairs of repeat 

units has to be performed (Huygens principle). For a few special structures this double sum 

can fairly easily be evaluated or replaced by integrals. Such calculations were made already 

soon after the basic Lord Rayleigh’s equation20 and he was the first one who derived the 

scattering function of uniform hard spheres. About 30 years later similar derivations were 

performed for infinitely thin rods of defined length by Neugebauer21 and for coiled and 

uniform linear chains by Debye22. 

The following three equations for the three idealized models are specially useful because they 

correspond to structures with three fractal dimensions df : df =3 for hard spheres, df =2 for a 

linear random coil, and  df =1 for rigid rods. In real experiments the behavior of dimensions 

lies in between these three examples. e.g. a df= 1,7 for linear chains in a good solvent is 

obtained but in a θ -solvent the corresponding value is df=2 (which looks like an Euclid 

dimension of a planar structure; but the random coil is a statistical structure). 
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 = − + −    (14) 

in eq.12: 2(5/ 3) gR R= is the radius of the sphere;  

in eq. 13:  212 gL R= is the length of the infinitely thin rod; 

in eq. 14: (Rg)
2 =(RN)2/6 is the mean square radius of gyration of the random coil. 

These particle scattering factors are well known and give a good orientation over the manifold 

difference of particle scattering factors from linear and branched structures.  
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The functions of the three particle scattering factors in eq.12-14 are presented in varying plot 

types (Figures 5a-c) which  have special advances or weaknesses, but all demonstrate that 

these three models allow conclusions whether a fairly stiff sample, or a branched one and the 

linear coil in between are causing this special behavior. 

 

 

 

 

 

 

 
 
Figure 5a: log-log presentation the negative      Figure 5b: Kratky plot presentation. 

digits denote the slope. 

 

 

 

 

 

 

    Figure 5c: Zimm plot representation 

 

In these plots the product qRg was used instead of the scattering angle θ or the magnitude of 

the scattering vector (4 / )sin( / 2)q π λ θ= . The qRg product has no dimension and therefore 

allows for a unproblematic comparison of results obtained in other laboratories or by use of a 

different equipment. 
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 Mean Square Radius of Gyration 2
gR  

In all these graphs the radius of gyration occurs as a sensible scaling factor, and indicates the 

outstanding significance of this parameter: This fact arises the question how Rg is defined and 

how it can be measured and predicted by theory? Figure 6 shows as an example a simple 

sketch of a chain model.  

 

 

 

 

 

 

Figure 6: Model for a short chain demonstrating the position of the central point of inertia, the 

corresponding vectors from this center to the various monomer units, and the vector between 

two points of segment length (broken red lines). The equations around this cartoon define the 

various sums between the chain units. (See text for further information). 

The broken lines in his figure illustrates the various vectors pointing towards the center of 

mass (indicated by the red star). This center in turn is defined by the condition that the sum 

over all vectors r i from this point to the various mass centers of the particle should be 

1

0
N

i
i=

=∑r . However. the magnitude of the individual vectors are finite and the square of them 

is positive. Accordingly the mean square radius of gyration is defined by the square  

2 2

1

1 N

g i
i

R r mean square radius of gyration
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This equation contains the average brackets⋯  which indicate that the definition also holds 

if the segment length fluctuates around an average value. If flexible segments are considered 

the center of mass is not positioned on one of the repeat units but somewhere between the 

segment clouds. This means eq.15 cannot directly be applied.  

Zimm and Stockmayer23 noticed that the position of the center of mass can be eliminated and 

replaced by the sum over all of the N2 vectors r jk with the result 
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A short outline of this derivation is the following:  

(1) One can form a vector sum starting in Figure 6 with the center of mass, going to the unit 
1 and forwards step by step to the unit N.  

(2) The same vector sum can be formed if the first vector from the center goes to the unit 2 
from there to unit N and finally from there to the unit 1 and the same can be done with the 
first vector going to the unit i.  

(3) Now the sum over all these vector sums can be formed, which (by definition of center of 
mass) is 0 because positive an opposite vector directions occur with the same frequency  ; 
but the square over the double sum in eq.16 remains positive.  

(4) In the double sum of eq.16 represents the summation from j to k but also from k to j, but 
both procedure give the same result, in other words the mean square radius is counted 
twice. Therefore the double sum has to be divided by 2. 

 

7. The forceful impact to the light scattering theory by Bruno H. Zimm (1920-2005) 

As shown already in eq.11 the sum over the sin(xjk)/(xjk) has to be performed and allowed 

prediction on the particle scattering behavior. This task is easy if a Gaussian conformational 

distribution is used. In this case a fairly simple result is obtained if the Debye approximation 

is applied. This approximation corresponds to a linearization of the exponential function 

2 2exp( ) 1jk jkax ax− − +≃ ⋯  which of course should be applied only after an exact solution has 

been derived. The exact derivation leads even for the Gaussian approximation to rather 

complex functions  and one has uo take much care to check the limits of the approximation. 

Certainly the first member is well known and leads for the particle scattering function to 

2
2 2 2 2
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1
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6 3

N N
n

jk g
j k

q
P q r higher terms of q R q

N

 
− + = − + 

 
∑∑≃ ⋯  (17) 

With eq.(16) one immediately obtains for the initial slope in a plot P(q) against q2 the mean 

square radius of gyration without knowing anything of the actual conformation. In other 

words the radius of gyration is an universal parameter. 

The first derivation of the scattering function for linear polymers of uniform contour length 

L= bN was made by Debye 22  on the basis of unperturbed dimensions with b the bond length 

and N the number of repeat units in the chain. The simple expression of eq.14 was obtained 

under the assumption of b/N<<1, which is  an excellent approximation in common static light 
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scattering. So far the derivations of the particle scattering factors of eqs12-14 remained 

essentially a sheer theoretical task and was not directly linked to the chemistry of preparation.  

This attitude changed in 1948 with the famous two papers in J. Chem. Phys by B. H. Zimm.24 

The following few remarks give in short an appreciation of his work as an outstanding 

scientist. Bruno Zimm set marks in the three different fields:  

(1) In the physics of static light scattering from linear and branched chains as a theoretician 

and an experimentalist (Cooperation with Stockmayer23);  

(2) In the field of biophysics by the theory of helix-coil transition of proteins25 and  

(3) In hydrodynamics by the contribution of draining to the intrinsic viscosity from linear 

chains and the effect on branched polymers.26  

The connection to realistic structure as prepared by chemists was achieved by combination of 

Debye’s derivation of eq.14 and Flory’s27 most probable molar mass distribution with the 

result 

s 2

1
( )

1 (1/ 3)polydisper e coil
g

P q
R

=
+

       (18) 

He also extended these calculation to linear chains with a distribution which corresponds to 

m-end-to-end coupled linear chains (Schulz distribution28) thus showing that the angular 

dependence of the scattered light is modified by the molar mass distribution. 

8. Two new fields in science on polymer conformations 

These two fields are  

(8a): The understanding of the polymer conformations perturbed by excluded volume 

interactions and (8b) The preparation of hyper-branched polymers and prediction of their 

conformational properties.  

Some detail of the out-coming new demands are given in the following two sections. 

8a: Conformation properties of linear polymers under the influence of excluded volume 

interactions. 

Chain expansion and radius of gyration 

Since the work by Kirkwood and Riseman29 on the intrinsic viscosity it was known that in 

good solvents a swelling of the dimensions occurs which is caused by the finite volume of the 

individual repeat units and weak attraction interaction among the units in the chain. Also it 
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was observed that the swelling slightly increased with the degree of polymerization.1953 

Flory presented a theory that could describe these features of swelling by an expansion factor 

0/g gR Rα =  in which the index zero refers to the unperturbed chain. The derived equation 

was30 

3/ 2
5 3 1/ 2

3

3
2.6 ;

2
z z N

b

βα α  − = =  
 

       (19) 

For large degrees of polymerization the effect of 3 5compared toα α  can be neglected. With 

the definition of α and 0.5
0gR N∝ one obtains for the swollen chain  

2 1 0.2gR N withε ε+∝ = ;   or  0.6gR KN withν ν= =    (20a,b) 

This relationship was criticized for several years, but after the comprehensive self-avoiding 

random walk simulations by Domb et al.31 nearly the same result was obtained with the 

slightly smaller value of the exponents 0.176 0.588orε ν= = . With these data the mean 

square radius of gyration of the expanded random coil was calculated by Peterlin32 to be  

2 1.176
2 2 2 0.588

2(1 2 )(1 ) 6.911g

N N
R b b for

ν

ν
ν ν

= = =
+ +

     (21a) 

2 2
0 0.5

6g

N
R b for v= =   unperturbed chain   (21b) 

Comment on approximations 

Eq. 20a describes the asymptote for large chain molecules in a good solvent and represents 
the upper limit. In several solvents this limit is not observed in experiments but the radius of 
gyration of long chain molecules can still be described by power law behavior with exponents 
of 0.500 0.588ν≤ ≤  where 0.500ν =  refers to the theta solvent and unperturbed 
conformations and 0.588ν =  for good solvents. At present only the good solvent behavior 
has been considered and scaling behavior is assumed to be valid also for short chains or 
segment lengths. These approximations have been used also for the segments in branched 
chain molecules. The results obtained by present theories give a much better agreement with 
experimental findings, but small deviations can be expected. A further improvement is 
obtained by interpolation between the unperturbed and fully perturbed behavior. 

 

Hydrodynamic radius 

In contrast the hydrodynamic radius Rh defined by the Stokes-Einstein relationship and the 

diffusion coefficient D 
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0
0

1

6 h

kT
D

Rπη
=          (22) 

cannot be derived in a similar manner as shown for the radius of gyration. For unperturbed 

conformation the common Gausssian size distribution for segments of n units is known 

3 / 2
2 2

n
3 2

W( X ,n ) exp( X )4 X dX ; X R / R
2 3

π
π

 = − = 
 

   (23) 

with Rn  as the end-to-end distance of a chain with n repeat units, and R the variable. 

The inverse hydrodynamic radius of a chain of n units is10 

1 / 2
1 / 2

n 0

b 6
n

r π
− =  

 
        (24) 

For the perturbed dimensions the required distribution was derived by Domb et al.31 from self-

avoiding random walk simulations 33 

0.28 2.43 2 0.588
n n

6
( X ,n ) 0.279X exp( X )4 X dX ; X R / R ; R bn

5
π−= − = =  (25) 

With this distribution the average of the inverse hydrodynamic radius of a segment is34 

1 / 2

0.588
h

b 5 1

r 0.582nπ
 =  
 

        (26) 

To obtain the hydrodynamic radius of the total linear chain with N repeat units the results 

from eq.24 and eq25 have to be summed over all segment pairs in the macromolecule with the 

results32,34 

1/ 2
1/ 2 1/ 2

1/ 2 0.51

0

1

( )
6 6 8

3.6843
3( )

N

N
h

N n n
b

N N unperturbed
R N nπ π

− −
−

   = = = ×   
   −

∑

∑
(27a) 

0,588
1/ 2 1/ 2

0.5881
0.588

1

( )
5 5 3.4378

4.323 . .
( )

N

N
h

N n n dn
b

N excl vol
R NN n dbπ π

−

−

−
= = = ×

−

∫

∫
 (27b) 

For the ratio g hR / R ρ≡  one has with 0,588
0 ( / 6) / 6,911g gR b N and R bN= =  for the 

unperturbed and perturbed radii of gyrations34  
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0 1,504ρ =  for the unperturbed linear chain      (28a) 

1.651ρ =  for the chain with excluded volume      (28b) 

The ρ  parameter is a valuable quantity because it gives significant information on the effects 

of branching. 

 

Influence of excluded volume interaction on the scattering behavior 

The effect of excluded volume interactions on the scattering function remained an unsolved 

issue for a long time because with the distribution of eq.25 the required integral for the 

average in eq.29 could not be solved analytically.35 

2
q,n

0

sin( qr sin( qr )
W( r ) 4 r dr

qr qr
φ π

∞
= = ∫       (29) 

This integral is easily performed if unperturbed chains are considered which are described by 

the Gaussian distribution of eq. 23 with the result 

2
, exp( ( ) )q n bq nφ = −      unperturbed chains     (30) 

For the swollen chains caused by the excluded volume interactions we carried out a numerical 

integration.33.. The result could be approximated by 

( )2.182 0.588
q,n.ex.vol . exp ( bq ) n / 6.2φ  ≅ −  

 
     (31) 

According to eq.11 the sum over all pairs of repeat units in eq.31 has to be performed. For 

uniform linear chains with a fixed length of N repeat units the double sum can be rearranged 

to a single integral. Furthermore the sum can be well approximated by an integral.  

, . .2
0

1 2
( )

N

qn ex volP q dn
N N

φ= + ∫          (32) 

Again this integral cannot be solved analytically but it could be solved by numerical 

integration. The integration of eq.29 for unperturbed chains is easily performed, all occurring 

integrals are well known, and the particle scattering factor of eq.14 for unperturbed linear 

chains is obtained. Figure 7a,b show the derived q-dependence of the particle scattering factor 

Clearly only in a limited q-regime the expected fractal behavior is obtained. From the 

experimental data it will become difficult to determine the right value for the linear slope, i.e. 
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the fractal dimension. The curves show two further important facts: (i) Up to 1.5gqR ≃  no 

differentiation between different structures or conformation can be made. In other words the 

mean square radius of gyration fully dominates the scattering behavior. For linear polystyrene 

this requires molar masses larger than Mw > 107 g/mol before deviations become noticeable, 

and indeed our recent measurements gave clear indications to the onset of perturbed 

conformations37  

 

 

 

 

 

 

 

 

Figure 7 (left) shows the result in form of a Kratky plot. Four curves are presented. (a) the 

black curve with square symbols indicates the perturbed linear chain by excluded volume 

interactions; (b) the blue dotted line and the open routs refers to the unperturbed chain with 

Debye’s approximation and (c) solid blue line with filled symbols the exact solution of the 

double sum and (d) the result with the Ptitsyn approximation36 in which a Gaussian 

distribution is used but with the perturbed mean square radius 

2 2 2 /(1 2 )2(1 )gR b n ν ν ν= + + with 0.588ν =  of the expanded coil. Figure 7 (right) shows the 

same curves but in the log-log presentation which is preferred in SANS studies. 

The domination of the radius of gyration at low qRg is a fortunate fact for the largely used 

separation techniques of SEC and FFF,  

In these experiments values of qRg >2 are rarely observed and therefore there is no reason to 

be worried that special conformational properties would have some influence.  

 Effects of the statistical nature of chemical reaction 

The derived results are applicable to uniform linear chains. Such structures can be obtained by 

living anionic polymerization or by the specific control of enzymes.40 These uniform 

structures appear attractive to chemists but this eagerly followed intention is not supported by 
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the kinetics of chemical reactions which are described by kinetic velocities. These velocities 

are averages over a distribution of individual reactions and thus are statistical processes. This 

fact was not immediately clear from reactions between two partners, but the statistical nature 

of reactions became apparent when polymers were prepared, for instance polyesters. Both, 

G.V. Schulz28 and P.J. Flory27 realized that predictions on the molar mass can be made only if 

the molar distribution is known. For linear polymers both scientist independently derived the 

same distribution which Flory denoted as most probable distribution. This distribution is 

rather common in quite other statistically processes. Much labor and energy has to be invested 

if for special reasons uniform polymers are required and such structures should be realized. 

Thus even in biological systems uniform biopolymers are only formed if imperatively needed. 

Special examples are the huge number of polysaccharides and other more complex structures, 

(cellulose, pectin, starch, glycogen, collagen, fibrin networks in the blood clotting process and 

others). With the exception of cellulose all the other quoted examples are branched or form 

beyond a critical point branching a network. 

Branched Polymers 

 How can structures of branched polymers be predicted from chemical reactions by theory? 

This question arose already with the common free radical polymerization of linear chains. 

Zimm24 used the molar mass distribution of Flory and performed the average of the Debye 

scattering curve. This technique can in principle be applied to branched samples if the 

distribution is known but the derivation even for unperturbed chains can become really 

cumbersome for instance for randomly branched samples using the Stockmayer distribution. 

Furthermore no extension of this approach to excluded volume interactions appear to be 

possible.  

The Rooted Tree approach 

It was Manfred Gordon42 in England who in the years around 1960 noticed that the polymer 

branching very much resembles common family trees if at random any monomer unit of a 

branched polymer is taken and considered as a root. Of course each family tree is a unique 

tree, and the same would be the case if it would require to consider trees for every repeat unit 

that was used as a root. However, we can safely assume that every unit has on average the 

same reactivity and the rooted tree of our choice corresponds then to a number average. With 

this mean field approximation the reactivity functional groups on the monomer are actually 

probabilities of reaction. Figure 8 shows such a rooted tree for a tetra-functional monomer.  
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In polymer chemistry the presentation of the of repeat units on shells is preferred; but with 

this picture it becomes increasingly more difficult to verify whether a unit belongs to the nth 

shell or to shells of numbers n-1 or n+1. This problem does not occur with the rooted tree 

presentation. Now the structure of the macromolecules is clearly defined by separated 

generations and the population of repeat units n these generation. 

 

 

 

 

 

  A spherical lattice       B   Bethe lattice 

Figure 8: Representation of a branched macromolecule: (A) in form of shells around a 

selected unit and (B) in form of a rooted tree in which the distance between the nth and 

(n+1)th generation is uniquely defined by the bond length b. 

n this example the number of units linked to this monomer is on average 4α  if 1α ≤  is the 

extent of reaction of one functional group, or in mathematical terms the probability of 

reaction. These 4α  units linked to the root form the first generation. In this generation one of 

the four functional groups have already been used and therefore only three functional groups 

remain available to form the population of the second generation, and the same situation 

remains for the third and all higher generations. In this simple case one needs to know only 

the simplest rules of combining probabilities44 and obtains for the population of monomer 

units in the nth generation. 

1( ) 1 4 (3 )nng α α α −= +          (32) 

Clearly, if we form the sum over all generations the weight average degree of polymerization 

is obtained 

4 1
1

1 3 1 3wDP
α α

α α
+= + =

− −
        (33a) 

The equation can easily be generalized for monomers with f-functional groups as was done by 

Stockmayer in 194343. 

 

gn = αf[α(f-1)]n-1

 ..
 .
 .
 .
 .
g4 = αf[α(f-1)]3

g3 = αf[α(f-1)]2

g2 = αf[α(f-1)]
g1 = αf
g0  =1 (root)
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1
1 , . .

1 ( 1) 1 ( 1)w

f
DP W H Stockmayer

f f

α α
α α

+= + =
− − − −

   (33b) 

This equation is remarkable, because it includes with f = 2 the behavior of polydisperse linear 

chains as it was derived 1948 by B.H. Zimm24 with the known molar mass distribution. 

Remarkably the treatment of rooted trees requires no knowledge of the molar mass 

distribution. Of course, with more complex branching reactions a more sophisticated 

algorithm is needed which requires the system of transition probabilities, but even this is 

fairly simple and it can be learned from the book by William Feller44 Moreover also the radius 

of gyration Rg, the hydodynamic radius Rh and the and the particle scattering factor P(q) are 

derived for such polydisperse unperturbed structures.  

Perturbation by excluded volume interactions 

Valuable insight into the branched structure are gained in particular from the ratio /g hR Rρ =  

which has been recognized as a characteristic parameter for branching.45 However, these 

parameters change their values in good solvents, and further effort has to be invested to 

extend present theories. For a long time the excluded perturbation could not satisfactorily be 

solved in particular for the prediction of the angular dependent scattering curves. The 

available equations for linear chains could not be derived analytically also for the branched 

structures . We applied numerical integration and could derive numerically the required 

quantities. A few examples are already published and a more detailed comparison is 

experimental findings is in progress. 

Conclusion remarks 

At present the characterization of polymers is made by the highly developed separation 

techniques. These optimized techniques permit precise determination of the weight average 

molar mass Mw and the molar mass distribution w(M) and, in addition, often the radius of 

gyration Rg. The dependence of Rg on the molar mass gives insight on a possible fractal 

behavior, effects of branching and good solvent behavior. Still for branched polymers the 

obtained results from these separation techniques do not give sufficient insight and 

information for a conclusive interpretation of conformational properties. There exist an almost 

unlimited diversity of branching and more details have to be collected. Mostly the one line 

detection of the intrinsic viscosity is used. The present understanding of this quantity is based 

on the so-called universal Kuhn-Mark-Houwinck equation which becomes misleading if 

applied to branched samples.46 The simultaneous detection of the radius of gyration and the 

hydrodynamic radius would be a real step forward, but the measurement of dynamic light 
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scattering requires some recording time, which from streaming sample is not always 

sufficiently long. The combination of SEC and FFF technique is a well established procedure 

and these techniques should combined with other ones. Most promising are SANS but also 

the method has the draw-back that the radius of gyration is difficult to measure accurately for 

large particles. Ccombination with separate static light scattering from not fractionated 

samples will become important. Hopefully a new and very efficient static light scattering 

device will become available soon on the market.  

 
 
Appendix: Osmotic modulus derived by theory for three special models 

Abbreviation: 2 cX A M c c / c* scaled concentration;= =  

app( c ) w

w

M M
F( c ) scaled osmotic mod ulus

M RT c

Π∂= =
∂

    (A1) 

Hard spheres: (Carnahan and Starling)15 

2 4

4
1 4 y( 1 y y ) y

F( c ) ; y X / 4
(1 y )

+ + − += =
−

     (A2) 

Flexible coils of linear chains (Ohta & Oono)17 

2

w n

1 ln(1 X*) 1 1 1
F( c ) 1 9 X * 2 2 exp (1 ) ln(1 X*)

8 X * 4 X * X *

X
X*

( 9 / 16 ) (1 / 8 )ln( M / M )

 +   = + − + + + +       

=
−

  

Cylinders of large axial ratio cp ( l / r )= , cylinder length (l), cross-sectional radius (rc): 

(Cotter & Martire)16 

2

4
1 2(1 1 / p )X * ( 2 / p )X * X

F( c ) ; X*
1 3 / p(1 X * / p )

+ + += =
+−

    (A3) 
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