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This contribution considers several advanced cleriaation techniques on the basis of static
light scattering and presumes basis knowledge oa exxcluded chromatography (SEC) and
field flow fractionation (FFF).

A short retrospect to the history of light scattgris given as a helpful introduction to the
higher complexity of these additional proceduresthie past the literature dealt mostly with
the scattering behavior of unperturbed linear chalHowever, the determined radius of
gyration in a good solvent in dependence of theammwlass clearly indicated a perturbation of
the dimensions by excluded volume interactions.s Teontradiction requires additional
measurements a careful analysis for instance oérnigellar dependence of the scattered light
and the concentration dependence. Furthermorerdpamtion of manifold so-called hyper-
branched samples induced a new challenge to dgriadjusted theories and the
corresponding interpretation by experimentalists.

1. Introduction

The two field indicated by the title of this shadview have not been a topic of intense
research in the past. Emphasis was mainly laichenrnvestigation of linear chains or weakly
branched chains because of the high flexibilitypolymer chains which made these product
attractive as new materials. Branching was knowtesta to networks at higher monomer
conversion, but the networks should consist ofiyfdong chains between the crosslinks to
keep the high flexibility of the material which nogisplayed a high elasticity resembling

those of natural rubber.

The change of interest to highly branched chains prabably evoked by the demand for
drug carriers which requires particle with a largember of external functional groups for
reversible binding of the medical samples. Both, lthear chains and especially the branched
samples, prepared by common synthesis, possessd tmolar mass distribution which are
suspected to reduce the material quality and nimigbsuitable for medical application in a
human body. Now the tendency turned towards thertetb develop suitable chemical
preparation techniques to reduce the width of tiséribdution or even to prepare perfectly
uniform samples. The latter was finally achievedcbynpletely controlled reactions to obtain
dendrimers, i.e. sphere-like samples with perfebtignched shells, up to 6 or even more
generations. The control of such perfect synthaads much labor and therefore Kim and
Webstet looked for preparations of highly branched sampiésch would have not the



perfect shape but still a huge number of functiagalups, accessible to further reactions.
These samples they denotedhgper-branched leaving open what is meanthyper. This
blurred but very attractive denomination stimulatedintless types of synthesis to branched

samples, but conformational properties remainedadigtable from the synthesis alone.

Already in the beginning of polymer science theestgation of the molar mass distribution
by special fractionation techniques became an angguest. We now dispose over the two
almost perfect separation techniques of size extriushromatography (SEC) and field flow
fractionation (FFF). Both complementary methodswvalseparation of molar masses from a
broad size distribution of polymers, by the on-lagplication of light scattering record of the
refractive index which permits the evaluation of timolar mass within small slices and the

mean square radius, if the fractions were suffitydarge in size.

The high quality data obtained by the highly depebb instruments are immediately
evaluated and are printed by an attached compliterinstruments are easy to handle but it
remained a somewhat mystery how these results al@sned, because all the intellectual
steps were made by the computer. The experientertad with linear chains still allowed for
a reasonable interpretation of the results, bst dioes not hold for the confusing manifold of
different branching structures. In addition thesln chains are known to swell to larger sizes
by excluded volume interactions, if dispersed iga@d solvent, but little is known on the
swelling of branched polymers in good solvents. Tieav aspects require a profound
understanding of the fundamental basis of staticdymamic light scattering. This demand is
not an easy topic and becomes apparent if one loak @t the history on the question what is
light and what happens if light hits a material.

2. Historical Overview

The following (incomplete) list of outstanding sulists gives an impression of the endeavor
to clarify the nature of light and its effects. &n300 years the intriguing question on the
nature of light kept scientists busy. The progmas slow, but it may help us to understand
what light scattering means and which conclusi@rslze drawn.

Christian Huygens 1624-1695
Isaac Newton 1643-1727
John Tyndall 1820-1893
James Clerk Maxwell  1831-1879
Heinrich Hertz 1857-1894
Lord Rayleigh 1842-1919

Albert Einstein 1879-1955



The considerations on light scattering apparerttiyted in the 1% century with Christiaan
Huygens? He formulated the principle:

Huygens principle:
“Every point of material that is hit by light is initiated to emit light of the same

wavelength”

Huygens principle is a most valuable starting p@nta theory of light scattering, this will be
demonstrated somewhat later. Clearly his stateinehtdes the opinion that light consists of
waves; but Isaac Newton, like Huygens a scientistastronomy and founder of basic
mechanics, adopted the view that light consistparticles and heavily opposed against
Huygens principle. For almost two centuries altHier development in the research on the
nature of light was considerably impeded by Isaa@wtdn’s reputation and paramount

scientific work mainly in mechanics.

Experimentalists often do not care much about teeocand just try to find what can be
observed and measured. Such experimental obsersatiere made by John Tyndall about
one hundred years after Newton. He noticed thatr#ileof light in a slightly turbid colloidal

solution is visible and can be detected. He alsmdothat the scattered light is partially
polarized and that the magnitude of polarizatiopestels on the angle at which the trail of

light is envisaged.

An incisive progress in theory was achieved byitiyenious work of James Clerk Maxwell
on the correlation between electricity and magnetisvhich was compatible to
electromagnetic waves, thus giving support to lehelectromagnetic waves. Lord Rayl&igh
took up this conjecture and derived with Maxweth®ory a first analytic equation for the
scattered light from gas molecules. Scatterings&imed to be caused by a primary beam to
initiate dipole vibrations of the electrons in tbatmost shell in the Nils Bor-model. In
theories the expression of polarizability is theoamt of vibrating dipoles per unit volume.. In
his first draft of the theory Lord Rayleigh he toakcount only of these dipole vibrations,
which already allowed him to explain the blue calbthe sky. Einstefimoticed that with this
originally drafted equation applied to solution sguare of the molar massv? of the
dissolved particles would result in contrast to eotptions. He brought to attention that
besides the dipole fluctuations thazal fluctuations in concentration have to be taken into

account. With this correction the molar mass ofghsdicle was correctly obtained.



3. Osmotic compressibility or osmotic modulus.(Debye’s contributior)

Einstein’s comment was still incomplete becausedresidered only thentropic part of the
fluctuations which neglects the energetic of intéoas between particles at finite
concentration. Einstein’s commenmias a result of his work on Brownian motibrend it
remains valid only at infinite dilution. Applicatmoof Einstein’s version to real experiments
apparently leads to molar masses which decredsglrar concentration. Debye and one year
later Zimm, Stein and Dofytook up this topic and repeated Einstein’s catafabut now
using the chemical potential rather than only theapy of the concentration fluctuations.

The chemical potentiadG / dnpgriicle In turn is related to the osmotic pressure caibyethe

dissolved molecules, and with this expansion ofstéim’s derivation the following equation
for scattered light was obtained.
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The Rayleigh ratidRg =|(Iﬂr2 takes into account that the scattered interi§fy) decreases
0

with the square of the distance to the detectamftbe scattering volumdy denotes the

primary beam (which is about Afimes stronger than the scattering inteniiy.

The first part in eq.1 is related to trethermal compressibility 5 of the solvent (which is

very low for pure liquids) and the second partekated to what may be denotedassotic
compressibility which is a much more pronounceedatfthan the isothermal compressibility
and is strongly related to the value of the molass

The effect of osmotic compressibility requires soadglitional comments. Due to thermal
fluctuations (i.e. Brownian motions) a local ingeaor (decrease) of the concentration,
around average concentration occurs. These davsafiiom equilibrium cause an increase (or
decrease) of the osmotic pressure which tends sh plois micro heterogeneity back to
equilibrium; The back-driving force is much weakand allows for considerably larger

deviations from equilibrium compared to the fonsehedensity fluctuations.

It is sensible to subtraction the scattering intgnsf the solvent because we are especially
interested in the behavior of the dissolved polgnekfter subtraction of the separately

measured scattering intensity of the solvent the well known Deby&equation is obtained.
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Even with this simplified writing eq.(2) is incorment if used for the analysis of
measurements because the important quantity whinotaims the molar mass is enclosed in

the osmotic pressure. Therefore Debsteggested to use the reciprocal of eq.(2)
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In this equationAy; Ag--- A, are thesecond, third and nth virial coefficient in the power
expansion of the osmotic pressure in terms of aunagon. Eq.(4) remains valid if the
dimension of the dissolved samples are small coegptr the wavelength of the light, more

precisely if the radius of gyratioR, <A/20(e.g. if the red light of an HeNe laser is usgd

should be smaller than 10 nm.). For larger macremdés or colloid particles an angular
dependence of the scattered light occurs. Thesellanglependencies allow for the
determination ofRy and for large structure in the range of the wawglerthis angular
dependence is characteristic for special strucrags, sphere or coiled macromolecules) and

will be discussed in the next section.

4. Additional remarks on the Osmotic Compressibility or the Osmotic Modulus

4.1 Colil-Coil Interpenetration Function

The second virial coefficient is known to indicaéite solubility of the dissolved polymer in a

solvent. i.e. a large value indicates good solbattavior and a value of, =0a quasi ideal

solution, denoted by Flory as théiasolvent. At the temperature Bof the used solvent the
repulsive and attractive forces are balanced to.z&lso negative values are possible but
eventually lead to phase separation into a polymeérand polymer-low concentration. For

flexible polymers A is given by the equatidh



A =4n3’2NA%\P* (5)

N, is Avogadro’s numberR, the radius of gyration an&” the asymptotic penetration

function at large molar mass of the sample. Eqsgembles the van der Waals equation for
real gases with the exception of the numericaloiacand the use of the cube of the radius of
gyration instead of the radius of an equivalendhgyhere, but it differs significantly by the
additional penetration facto#” . This mathematically rather complex function hasiraple
meaning: Polymers have no defined surface but sboéiflexible chain ends which partially
are stretched out. If two such polymers are conmmitg contact the dangling chain segments
from both particles will penetrate and form a comnmaomain. The depth of penetration
depends on the strength of the repulsive interastletween the various repeat units of the
two interacting particles which this is given byetlexcluded volume3 of the individual

monomer repeat units. Figure 1 may illustrate vi\ateant.

Figure 1: Sketch of two interpenetrating

+- -+
distance between centers of mass macromolecules.
A small ¥ function correspond to deep penetration and depgndome extent on the molar
mass of the sample and soon with increasihgeaches a limited value 8F" = 0.29**?for

flexible linear chains. As may be expected thisgbetion function depends on the molecular

structure. Figure 2 shows this behavior for a nunolbexamples?
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Figure 2: Penetration tunctions of linear and st@mched polymers, mainly from star-
molecules. The two points with more than 100 chaéfier to star-microgels. i.e. with a small

microgel as core. For further references’dée Overlap Concentration and Entanglement



Further insight in the inter-particle interactioissobtained if eq.5 is slightly rearranged by
multiplying it by M

AM = (4773’2NALIJ*)%? =1 (6)

C*
wherec’ may be taken as the weight concentration of theamr repeat units in the particle.

Let us shortly consider the ratio c/c*: We can mak@asurements at X = c/c* < 1 or at X =
c/c*>1. We then notice that at X=1 the concentrated monomer units in the dissolved
particles equals the in-weight concentration. lheotwords the macromolecules must just
attach each other, and at higher concentrationl@l¥e segment clouds of the chain must start
to overlap and form an dynamic network of entangibdins. Thus c* may be called the

overlap concentration.
With this notation eq.(4)can be writtén

%%—g{u 2AMC+ BAMC? +--- = 1+ 2X + X+ 4,X°+-- 7)

This notation goes back to Pierre-Gilles de Genfiédswas known to him that for hard
spheres the higher virial coefficients can be egped in terms ok, and this was possible

for other uniform structures.
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Figure 3: Variation of the osmotic moduIL(sMW/RT)(aﬂ/ac)zMW/Mapp(c) as a

function of c/c* for three models and experimerdata from a linear polyester and three

crosslinked polyesters of the same chain-length.

A well defined interaction curve is obtained, buthadifferent coefficientsy, for linear or

branched structures. Against de Gennes expectdiifarences between different structures



of the dissolved particles are noticeable, withmdwing the mean square radius of gyration.
Eq.7 is of great value for instance, if soft matksiare characterized by rheology, since at X >
1 anentangled network can be formed which exhibits special behaviorha theological
experiment. Figure 3hows some examples of the osmotic modulus andhiberetical
curves, i.e. for hard sphefas cylindrical structureé$ and flexible coils’’ The graphs
elucidates whether a flexible or a stiff chainnstlhe solution or whether the particle had a

more globular shape.

5. Angular dependence of scattered light

It was already mentioned that the scattering famctif eq.4 or 7 holds only for small particles
compared to the used wavelength. Macromoleculds raidii of gyration larger than 10 nm
cause an angular dependence which is describechbsnzaalized functiorP(q)

_(o) (8)
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The required extension of eq.4 is given by

Kc _ 1
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This angular dependence of the scattering intemsitgrgeg-values displays a characteristic
behavior and is for this reason called particleétedag factor or molecular structure factor.
To understand this one has to go to some detaite@mterference of the scattering waves if
two scattering points are separated by a certaigilie for instance, these may be the two end-
points of a segment in a chain-molecule. Figure & mMemonstrate on a simple example
when only two such scattering points are activatedcattering emitters. Because of the finite
distance length between these points a phase afifferbetween the two light waves arises
and causes interference. The phase differenceasesewith the scattering angle. The effect
can be described by unit vectors of the primarynbead from the scattered light. The

magnitude of the difference of the two unit-vect@sgiven by[so—s] =2sin@/2), and

when the wave length of the used light is taken axtcount one obtains for the magnitude of

the scattering vector q

4?%smw/a (10)

0

[a]=q=

Note, the scattering vector has the dimensionlehgth



In a real experiment the macromolecules are contbokenany chain segments of different
length, and therefore the sum over all pairs ofsiwhich form covalently bond segments has
to be taken. An example of such segment is shoviAigare 4b The summation finally leads,

after normalization by the total number of unitset].11 for the particle scattering factor

P() = %iﬂ—smm )> (11

= qar
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lal = (4my/Ag)sin(6/2

Detector

Figure 4a: The set-up of the primary light beam #redposition of the detector for detection
of the scattered light at andgde The insert to the right indicates the definitidritee scattering

vectorq.

Figure 4b: Demonstration of the distance vectowben two
unitsj andk in a branched chain. The segment contour length
consists in this case of 9 repeat units and aocoréngth of
l;,=8b

Eg. 11 contains the average <gmf)/qrjx> which requires some additional comments.

() Orientational fluctuation: The derivation o&in(g-r)/(g-r) was not a trivial task. It takes
account of the fact that due to Brownian motioresghbject can take all orientations. In
experiments we measure tiverage over all orientations. The si{)/qrjk function arises
from the average of a cosine function with an arguointhat contains the cosine of the angle

between the orientation of the distance vectand the scattering vectqr(see Figure 4a).

(cos(ger)) = 1 qu cos( u)du _sin(ar) (12)
ar qr

(For details of the not trivial derivation see treginal paper by Deby&and the repeat by

Guinier®.



(i) End-to-end fluctuations: For rigid particles like hard spheres or rigiddrao further
derivations are required, but for flexible lineartwanched chains the end-to-end distance of

the two segment ends fluctuate around an averagghleThis average is indicated by the

<> brackets and requires the knowledge of the ershtb-distance distribution. The

adequate distributions are often not known, anda@mations have to used.

Once the averadein(qrjk)/qrjk>has been derived the sum in eg.11 over al paireméat

units has to be performed (Huygens principle). &dew special structures this double sum
can fairly easily be evaluated or replaced by irgksy Such calculations were made already
soon after the basic Lord Rayleigh’'s equaticand he was the first one who derived the
scattering function of uniform hard spheres. AbB8Qtyears later similar derivations were
performed for infinitely thin rods of defined lehgby Neugebauét and for coiled and

uniform linear chains by Deb$e

The following three equations for the three ideadimodels are specially useful because they
correspond to structures with three fractal dimemsd; : d: =3 for hard spheres; =2 for a
linear random coil, andd =1 for rigid rods. In real experiments the behawbdimensions
lies in between these three examples. e.d=al,7 for linear chains in a good solvent is
obtained but in af-solvent the corresponding value ds=2 (which looks like an Euclid

dimension of a planar structure; but the randorhis@ statistical structure).

P(qR)hardSpherez(( = j [sin(@R)- gRcosER §° Lord Rayleigh®® 191 (12)

P(qL),o :i{S(qL)—(Mj } Neugebauer® 1943 (13)
gL gL/2

PRy et = (o 7 Rg) —— [ (GR,)*~1+expt @R, f)| Debye™ 1945 (14)

ineq.12: R=,/(5/3)R is the radius of the sphere;

ineq. 13: L= 12R§ is the length of the infinitely thin rod;

in eq. 14: Rg)Z:(RN)ZIG is the mean square radius of gyration of the randoiin

These particle scattering factors are well knowth gime a good orientation over the manifold

difference of particle scattering factors from An@nd branched structures.
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The functions of the three particle scatteringdesin eq.12-14 are presented in varying plot
types (Figures 5a-c) which have special advanceseaknesses, but all demonstrate that
these three models allow conclusions whether & fsiiiff sample, or a branched one and the

linear coil in between are causing this speciablvédr.
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Figure 5a: log-log presentation the negative iguie 5b: Kratky plot presentation.
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In these plots the produgRy was used instead of the scattering ar@te the magnitude of

the scattering vectoy= (477/A)sin@ /2). The gRy product has no dimension and therefore

allows for a unproblematic comparison of resulttaoied in other laboratories or by use of a

different equipment.
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Mean Squar e Radius of Gyration <R§>

In all these graphs the radius of gyration occsra aensible scaling factor, and indicates the
outstanding significance of this parameter: Thig &xises the question hdwy is defined and
how it can be measured and predicted by theory@r&i§ shows as an example a simple

sketch of a chain model.

Figure 6: Model for a short chain demonstratingghbsition of the central point of inertia, the
corresponding vectors from this center to the warimonomer units, and the vector between
two points of segment length (broken red lines)ke €huations around this cartoon define the

various sums between the chain units. (See texuftrer information).

The broken lines in his figure illustrates the was vectors pointing towards the center of
mass (indicated by the red star). This center iin tsl defined by the condition that the sum
over all vectorsr; from this point to the various mass centers of plaeticle should be

N
Zri =0. However. themagnitude of the individual vectors are finite and the squafréhem
i=1

Is positive. Accordingly the mean square radiugyohtion is defined by the square

(R)= %i( ?)  mean squareradiusof gyration (15)

i=1

This equation contains the average brao(ke}swhich indicate that the definition also holds

if the segment length fluctuates around an avevafjee. If flexible segments are considered
the center of mass is not positioned on one ofr¢gpeat units but somewhere between the

segment clouds. This means eq.15 cannot directippbed.

Zimm and Stockmayét noticed that the position of the center of masswa eliminated and

replaced by the sum over all of tNévectorsr,-k with the result

12



<RS>:%iZ<ri> (16)

j=1 k=1

A short outline of this derivation is the following:

(1) One can form a vector sum starting in Figure 6 with the center of mass, going to the unit
1 and forwards step by step to the unit N.

(2) The same vector sum can be formed if the first vector from the center goes to the unit 2
fromthereto unit N and finally from there to the unit 1 and the same can be done with the
first vector going to the unit i.

(3) Now the sum over all these vector sums can be formed, which (by definition of center of
mass) is 0 because positive an opposite vector directions occur with the same frequency ;
but the square over the double sumin eg.16 remains positive.

(4) In the double sum of eg.16 represents the summation from j to k but also from k to j, but
both procedure give the same result, in other words the mean square radius is counted
twice. Therefore the double sum has to be divided by 2.

7. Theforceful impact to thelight scattering theory by Bruno H. Zimm (1920-2005)

As shown already in eq.11 the sum over the &)i(xx) has to be performed and allowed
prediction on the particle scattering behavior.sTtaisk is easy if a Gaussian conformational
distribution is used. In this case a fairly simpsult is obtained if the Debye approximation
is applied. This approximation corresponds to @dnization of the exponential function

exp(—aszk )= 1- axfk +--- which of course should be applied only after aacexsolution has

been derived. The exact derivation leads even Her Gaussian approximation to rather
complex functionsand one has uo take much care to check the Iohitie approximation.

Certainly the first member is well known and le&alsthe particle scattering function to

P(q) = (1—6q—ljzizz:<rji> + higher terms of qz”] =1—%<R92>q2+ (17)

J

With eq.(16) one immediately obtains for the idiséope in a ploP(q) againsty’ the mean
square radius of gyration without knowing anythioigthe actual conformation. In other

wordsthe radius of gyration is an universal parameter.

The first derivation of the scattering function forear polymers of uniform contour length
L= bN was made by Deby& on the basis of unperturbed dimensions withe bond length
andN the number of repeat units in the chain. The stngXpression of eq.14 was obtained

under the assumption bfN<<1, which is an excellent approximation in conmsatic light

13



scattering. So far the derivations of the partistattering factors of eqsl12-14 remained
essentially a sheer theoretical task and was netttl linked to the chemistry of preparation.

This attitude changed in 1948 with the famous tapays inJ. Chem. Phys by B. H. Zimm?*
The following few remarks give in short an appréoia of his work as an outstanding

scientist. Bruno Zimm set marks in the three ddferfields:

(1) In the physics of static light scattering from Bmeand branched chains as a theoretician

and an experimentalist (Cooperation with Stocknfayer
(2) In the field of biophysics by the theory of heligictransition of proteirS and

(3) In hydrodynamics by the contribution of drainingttee intrinsic viscosity from linear
chains and the effect on branched polyniérs.

The connection to realistic structure as prepasednegmists was achieved by combination of
Debye’s derivation of eq.14 and Flor#smost probable molar mass distribution with the

result

1

P(q) polydisper se coil = W/B)Rgz (18)

He also extended these calculation to linear chaitis a distribution which corresponds to
m-end-to-end coupled linear chains (Schulz distidnif) thus showing that the angular
dependence of the scattered light is modified leyntlolar mass distribution.

8. Two new fieldsin science on polymer confor mations
These two fields are

(8a): The understanding of the polymer conformatiqrerturbed byexcluded volume
interactions and (8b) The preparation tiyper-branched polymers and prediction of their

conformational properties.
Some detail of the out-coming new demands are givéme following two sections.

8a: Conformation properties of linear polymers undéhe influence of excluded volume

interactions.
Chain expansion and radius of gyration

Since the work by Kirkwood and Risenfamn the intrinsic viscosity it was known that in
good solvents a swelling of the dimensions occurglvis caused by the finite volume of the
individual repeat units and weak attraction intecacamong the units in the chain. Also it

14



was observed that the swelling slightly increaseth whe degree of polymerization.1953
Flory presented a theory that could describe themteires of swelling by an expansion factor

a=R,/R, in which the index zero refers to the unperturbbein. The derived equation

was?
3/2
a®-a®=2.6z; z=(§j ﬁle’z (19)
2) b
For large degrees of polymerization the effectadfcomparedto a® can be neglected. With

the definition ofa and R, [J N°°one obtains for the swollen chain
(RYDON™  withe=0.2; or R, =KN" with v=0.6 (20a,b)

This relationship was criticized for several yedrst after the comprehensive self-avoiding
random walk simulations by Domb et®ilnearly the same result was obtained with the

slightly smaller value of the exponents=0.176 or v = 0.58{ With these data the mean

square radius of gyration of the expanded randatwes calculated by Peterfihto be

NZV N1.176
b2

(o) =p’ 201+ v)(1+v)  6.911

for v =0.58¢€ (21a)

<R 2> = bz% for v=0.5 unperturbed chain (21b)

g0

Comment on approximations

Eqg. 20a describes the asymptote for large chain molecules in a good solvent and represents
the upper limit. In several solvents this limit is not observed in experiments but the radius of
gyration of long chain molecules can still be described by power law behavior with exponents
of 0.500<v< 0.58¢{ where v =0.50C refers to the theta solvent and unperturbed
conformations and v =0.588 for good solvents. At present only the good solvent behavior
has been considered and scaling behavior is assumed to be valid also for short chains or
segment lengths. These approximations have been used also for the segments in branched
chain molecules. The results obtained by present theories give a much better agreement with
experimental findings, but small deviations can be expected. A further improvement is
obtained by interpolation between the unperturbed and fully perturbed behavior.

Hydrodynamic radius

In contrast the hydrodynamic radi&® defined by the Stokes-Einstein relationship ara th

diffusion coefficientD

15



D, = <i> (22)
6777, \ R,
cannot be derived in a similar manner as showrtHerradius of gyration. For unperturbed

conformation the common Gausssian size distribdtosegments af units is known
3/2
_(3 2,2 2 1y _
W(X,n)—(ﬁj exp(—gx YArrX <dX; X =R/R, (23)

with R, as the end-to-end distance of a chain witepeat units, anR the variable.

The inverse hydrodynamic radius of a chain of risuist’

1/2
<£> =(Ej n~1/2 (24)
g \7

For the perturbed dimensions the required distidbutvas derived by Domb et Hifrom self-
avoiding random walk simulatiori3

(X,n)=0.279%x %% exp(—% X 28X 2dX; X =RI/R,; R,=bn®®8 (25

With this distribution the average of the invergeltodynamic radius of a segment‘is

b\ (5 1/2 1 26
E "7 0.58210-588 (26)

To obtain the hydrodynamic radius of the total déinehain withN repeat units the results
from eqg.24 and eq25 have to be summed over all segpairs in the macromolecule with the

result$?34

N
N - n)n*'2 12
WO _(6) 8 e
< >_ (_j 4 = (—j 3 N™“=3.6843%N unperturbed (27a)

R, T ZN:(N—n) T

N
N - n)n™**dn
b\ /5 1’2{ (N=n) _/5\"*3.4378_ 058
ﬁ =~ - ={— W—4.323><N excl vol . (27b)
jl (N —n)db

For the ratioR, / R, = p one has withR,, =b(N//6) and =bN°**/,/6,911 for the
Ry /Ry Ry Ry

unperturbed and perturbed radii of gyratiyns
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Po =1,504 for the unperturbed linear chain (28a)
p =1.651 for the chain with excluded volume (28b)

The p parameter is a valuable quantity because it gigrsficant information on the effects

of branching.

Influence of excluded volume interaction on the scattering behavior

The effect of excluded volume interactions on tbattering function remained an unsolved
issue for a long time because with the distributaineq.25 the required integral for the

average in eg.29 could not be solved analyticAlly.

%n:<sn(qr>:jW(r)M4m2dr (29)
' qr 0 qr
This integral is easily performed if unperturbecicls are considered which are described by

the Gaussian distribution of eq. 23 with the result
@, =exp- bayn) unperturbed chains (30)

For the swollen chains caused by the excluded velunteractions we carried out a numerical

integration®* The result could be approximated by

Py n.exvol . 1EXP— {( bq )2 (n0.588)2'18 / 6-2} (31)

According to eg.11 the sum over all pairs of repgdts in eq.31 has to be performed. For
uniform linear chains with a fixed length Nfrepeat units the double sum can be rearranged

to a single integral. Furthermore the sum can Heapproximated by an integral.

P(q) = L + 2 jl'qo dn (32)
Ny w12 n,ex.vol .

N N2 ) q
Again this integral cannot be solved analyticallyt bt could be solved by numerical
integration. The integration of eq.29 for unperadichains is easily performed, all occurring
integrals are well known, and the particle scattgriactor of eq.14 for unperturbed linear

chains is obtained. Figure 7a,b show the dergrddpendence of the particle scattering factor

Clearly only in a limitedg-regime the expected fractal behavior is obtainedmFthe

experimental data it will become difficult to detene the right value for the linear slope, i.e.
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the fractal dimension. The curves show two furtingportant facts: (i) Up togR, =1.5 no

differentiation between different structures or fosmation can be made. In other words the
mean square radius of gyration fully dominatessitegtering behavior. For linear polystyrene
this requires molar masses larger thap:ML0" g/mol before deviations become noticeable,
and indeed our recent measurements gave clearatiutis to the onset of perturbed

conformation®’

10° 3
10" 3
&0 ] S 102 .. slope
~ E .. -1,7
—e— excl.vol.Gauss 1--o-- excl.vol. Gauss approx X%
—=— excl.vol.best fit 10° 4—e— excl.vol. best fit
~-0-- unperturbed Debye 3-© unperturbed Deby approx.\ \y*,
—e— unperturbed exact . 1—e— unperturbed exact |
0 5 10 15 20 25 30 35 40 0.1 1 10 100
aR, aR,

Figure 7 (left) shows the result in form of a Knatlot. Four curves are presented. (a) the
black curve with square symbols indicates the pleew linear chain by excluded volume
interactions; (b) the blue dotted line and the opmirts refers to the unperturbed chain with
Debye’s approximation and (c) solid blue line witlled symbols the exact solution of the
double sum and (d) the result with the Ptitsyn epipnatior’® in which a Gaussian
distribution is  used but with the  perturbed mean uasg  radius

(R)=b™® /(1+ v)2(1+v )with v =0.588 of the expanded coil. Figure(fight) shows the
same curves but in the log-log presentation whsgbréferred in SANS studies.

The domination of the radius of gyration at low qRy is a fortunate fact for the largely used

separation techniques of SEC and FFF,

In these experiments values of qRg >2 are rarely observed and therefore there is no reason to

be worried that special conformational properties would have some influence.
Effects ofthe statistical nature of chemical reaction

The derived results are applicableutoform linear chains. Such structures can be obtained by
living anionic polymerization or by the specific tol of enzymeé® These uniform

structures appear attractive to chemists but tgery followed intention is not supported by
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the kinetics of chemical reactions which are désctiby kinetic velocities. These velocities
are averages over a distribution of individual teexs and thus argtatistical processes. This
fact was not immediately clear from reactions betwavo partners, but the statistical nature
of reactions became apparent when polymers wemgapgd, for instance polyesters. Both,
G.V. Schulz® and P.J. Flof/ realized that predictions on the molar mass camade only if
the molar distribution is known. For linear polymdioth scientist independently derived the
same distribution which Flory denoted amost probable distribution. This distribution is
rather common in quite other statistically processéuch labor and energy has to be invested
if for special reasons uniform polymers are reqlia@d such structures should be realized.
Thus even in biological systems uniform biopolymemes only formed if imperatively needed.
Special examples are the huge number of polysadesaand other more complex structures,
(cellulose, pectin, starch, glycogen, collagenitilmetworks in the blood clotting process and
others). With the exception of cellulose all thbestquoted examples are branched or form
beyond a critical point branching a network.

Branched Polymers
How can structures of branched polymers be predicted from chemical reactions by theory?

This question arose already with the common frelcah polymerization of linear chains.

Zimm?* used the molar mass distribution of Flory and qrened the average of the Debye
scattering curve. This technique can in principke dpplied to branched samples if the
distribution is known but the derivation even fanperturbed chains can become really
cumbersome for instance for randomly branched sssnpding the Stockmayer distribution.
Furthermore no extension of this approach to exadudolume interactions appear to be

possible.
The Rooted Tree approach

It was Manfred Gordd¥ in England who in the years around 1960 noticed the polymer
branching very much resembles common family tréeg random any monomer unit of a
branched polymer is taken and considered as a @atourse each family tree is a unique
tree, and the same would be the case if it wouddire to consider trees for every repeat unit
that was used as a root. However, we can safelymasshat every unit has on average the
same reactivity and the rooted tree of our choareesponds then to a number average. With
this mean field approximation the reactivity fuocial groups on the monomer are actually

probabilities of reaction. Figure 8 shows suchatead tree for a tetra-functional monomer.
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In polymer chemistry the presentation of the ofeagpunits on shells is preferred; but with
this picture it becomes increasingly more difficidtverify whether a unit belongs to thin
shell or to shells of numbersl or n+1. This problem does not occur with the rooted tree
presentation. Now the structure of the macromotscuk clearly defined by separated

generations and the population of repeat unitesdlyeneration.

g, = affa(-1)]™*

g, = affa(t-1)]°
g, = af[a(f-1)]?
g, = affa(f-1)]
g, =af

go =1 (root)

A spherical lattice B Bethe lattice

Figure 8: Representation of a branched macromaeddl) in form of shells around a
selected unit and (B) in form of a rooted tree ihick the distance between théhrand

(n+1)h generation is uniquely defined by the bond lermth

n this example the number of units linked to thisnmmer is on averagéa if a <1 is the
extent of reaction of one functional group, or in mathematical terthe probability of
reaction. Theseda units linked to the root form the first generatiémthis generation one of
the four functional groups have already been useltlaerefore only three functional groups
remain available to form the population of the setgeneration, and the same situation
remains for the third and all higher generationsthis simple case one needs to know only
the simplest rules of combining probabilifitsnd obtains for the population of monomer

units in thenth generation.

g,(@) =1+4a (2 )™ (32)

Clearly, if we form the sum over all generations tieight average degree of polymerization
IS obtained

DR =1+ % - 1+a
1-3r 1-%

(33a)

The equation can easily be generalized for monomighsf-functional groups as was done by
Stockmayer in 1945,
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fa _ 1+a

1-(f - 1-(f-1p’

DR, =1+ W. H . Sockmayer (33b)

This equation is remarkable, because it includels fx 2 the behavior of polydisperse linear
chains as it was derived 1948 by B.H. Ziffrwith the known molar mass distribution.
Remarkably the treatment of rooted trees requiresknowledge of the molar mass
distribution. Of course, with more complex branchineactions a more sophisticated
algorithm is needed which requires the system afidition probabilities, but even this is
fairly simple and it can be learned from the boglMilliam Fellef** Moreover also the radius
of gyrationRy, the hydodynamic radiu’, and the and the particle scattering fad¥@y) are
derived for such polydisperse unperturbed strusture

Perturbation by excluded volume interactions

Valuable insight into the branched structure aieeghin particular from the rati@ =R /R,

which has been recognized as a characteristic geanfor branching® However, these

parameters change their values in good solvent$,famher effort has to be invested to
extend present theories. For a long time the exclyzkrturbation could not satisfactorily be
solved in particular for the prediction of the alagyudependent scattering curves. The
available equations for linear chains could notdbaved analytically also for the branched
structures . We applied numerical integration andla derive numerically the required
quantities. A few examples are already published anmore detailed comparison is

experimental findings is in progress.
Conclusion remarks

At present the characterization of polymers is mhbgiethe highly developed separation
techniques. These optimized techniques permit geedetermination of the weight average
molar masdVl,, and the molar mass distributiev(M) and, in addition, often the radius of
gyration Ry. The dependence d¥; on the molar mass gives insight on a possible dfact
behavior, effects of branching and good solventabih. Still for branched polymers the
obtained results from these separation techniquesnat give sufficient insight and
information for a conclusive interpretation of corrhational properties. There exist an almost
unlimited diversity of branching and more detaits/é to be collected. Mostly the one line
detection of the intrinsic viscosity is used. Tegent understanding of this quantity is based
on the so-called universal Kuhn-Mark-Houwinck edmatwhich becomes misleading if
applied to branched sampf@sThe simultaneous detection of the radius of gyratiod the
hydrodynamic radius would be a real step forward, the measurement of dynamic light
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scattering requires some recording time, which fretreaming sample is not always
sufficiently long. The combination of SEC and FleEhnique is a well established procedure
and these techniques should combined with othes.dvdest promising are SANS but also
the method has the draw-back that the radius dtigyr is difficult to measure accurately for
large particles. Ccombination with separate stlight scattering fromnot fractionated
samples will become important. Hopefully a new amaly efficient static light scattering

device will become available soon on the market.

Appendix: Osmotic modulus derived by theory for three specradels

Abbreviation: X = AAM.c=c/c* scaled concentration;

M
F(c)=—2pR(e) - Mw 977 aled osmoticmod ulus (AL)
M,  RT dc
Hard spheres: (Carnahan and Starfing)
L2y A
F(c)=1tAYAYTYI*Y x4 (A2)

(1-y)*
Flexible coils of linear chains (Ohta & Oonb)

F(c)=1+%{9x*—2+2m(1x;*xﬂexp{l( Lo+t )jln(1+><*)}

4 x* X *2
_ X
(9/16)—(1/8)In(M,/ M,,)

*

Cylinders of large axial ratigp =(1/r; ), cylinder lengthl, cross-sectional radius).

(Cotter & Martire}®

* *2
1+2(1+1/ p)X* H(2/ p)X* ., X (A3)

(1-X*/ p)* © 7 T 1+3/p

F(c)=
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